Closing Fri: $\quad 3.10$
Closing Mon: 4.1(1) and 4.1(2)
Closing Wed: 4.3

3.10 Linear Approximation

Idea: "Near" the point (a,f(a)) the graphs
of $y=f(x)$ and the tangent line $y=f^{\prime}(a)(x-a)+f(a)$
are very close together.

We say the tangent line is a linear approximation or linearization or tangent line approximation to the function. Sometimes it is written as

$$
L(x)=f^{\prime}(a)(x-a)+f(a)
$$

In other words:
If $x \approx a$, then

$$
f(x) \approx f^{\prime}(a)(x-a)+f(a)
$$

Examples:

1. Find the linear approximation of $f(x)=\sqrt{x}$ at $x=81$. Then use it to approximate the value of $\sqrt{82}$.
2. Find the linearization of
$g(x)=\sin (x)$ at $x=0$. Then use it to approximate the value of $\sin (0.03)$.
3. Using tangent line approximation estimate the value of $\sqrt[3]{8.5}$.

Some Homework Hints:

Problem 10: Suppose that a and b are pieces of metal of constant length which are hinged at C (note: length c can change).

$$
\begin{aligned}
\text { At first: } A & =\pi / 4 \operatorname{rad}\left(45^{\circ}\right) \quad \text { and } \\
B & =\pi / 3 \mathrm{rad}\left(60^{\circ}\right) .
\end{aligned}
$$

You then widen A to $46^{\circ} \quad(46 \pi / 180 \mathrm{rad})$

The problem asks you to use the tangent line approximation to estimate new the angle B. That is, find the tangent line

$$
B=? ? ?(A-? ? ?)+? ? ?
$$

There is a big hint that says the "law of sines" gives:

$$
\frac{b}{a}=\frac{\sin (B)}{\sin (A)}
$$

Problem 8: Total surface area of a cone shaped solid:

$$
S=\pi r^{2}+\pi r \sqrt{r^{2}+h^{2}}
$$

At first: $h=8 \mathrm{~cm}, r=6 \mathrm{~cm}$ You then increase the height by 0.26 cm . (to 8.26 cm)

You want to change the dimensions in such a way that the total surface area remains constant.

The problem asks you to use the tangent line approximation to estimate the new value of r. That is, find the tangent line

$$
r=? ? ?(\mathrm{~h}-\text { ???) + ??? }
$$

Ch. 4 Derivative Applications

4.1: Max/Min Values

Terminology for analyzing a function: Let $\mathrm{y}=\mathrm{f}(\mathrm{x})$.

1. What is the domain?

We will only talk about points that are already in the domain.
2. What are the endpoints?

Is the problem restricted to a closed interval?
3. What are the "critical numbers"?

A critical number is a location,
$x=a$, where either
(a) $f^{\prime}(a)=0$, or
(b) $\mathrm{f}^{\prime}(\mathrm{a})$ does not exist
4. Are there peaks and valleys?
(also known as extrema or optima)
(a) A local maximum is higher than nearby points on both sides.
(b) A local maximum is lower than nearby points on both sides.
(c) The absolute max (or global max) is the highest overall point.
(d) The absolute min (or global min) is the lowest overall point.

Small Technical Note:
The value of a function, $y=f(x)$, is the output y-value.
A question asking you to find the absolute max of a function is asking for the y-value. The x is where the max would occur, not the max value.

Key observations:

1. Local max/min always occur at critical numbers! (Fermat's Thm)
2. Absolute max/min always occur at critical numbers or endpoints! (Extreme Value Theorem)

Thus, in all max/min problems our first steps will be to find the critical numbers.

